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ABSTRACT:
     A second order accurate nonuniform
technique for FDTD simulations which does
not depend on supraconvergence is
presented.  The technique is useful for FDTD
simulations with nonuniform grid spacings
for systems which require finer details in
small regions of the simulation space.

FORMULATION:
     The FDTD method has been widely used
to solve complex electromagnetic problems
in three dimensions including transmission
lines, antennas, IC packages, etc. One of the
limitations of the method has been its
dependence on uniform grid spacing which
leads to large computer memory
requirements when modeling small details
inside the simulation space, such as the
modeling of submicron on chip
interconnects[1] .  The method is second
order accurate with respect to the grid
increment when implemented on a uniform
grid. Supraconvergence has been used to
show that if the grid is made nonuniform so
that the electric field differencing is first
order, and the magnetic and time
differencings remain second order, then the
whole system should behave as a second
order accurate system [2].  However, this
approach has been shown to be sensitive to
the accuracy of the boundary conditions
associated with the boundary of the
simulation space [3].  If the boundary
conditions are not highly accurate, the
system will not exhibit second order
accuracy.  Additionally there will still be

local first order errors which may influence
measurements based on transient data.
In this paper a second order FDTD method is
implemented using an algorithm which
generates the coefficients for the nonuniform
portions of the grid and achieves second order
accuracy by utilizing three neighboring fields
instead of the standard two neighboring fields
used in centered differencing [4].  The
nonuniform coefficients are derived using the
method of undetermined coefficients, shown to
be second order accurate using a Taylor’s series
expansion, and the stability criteria is derived
using Fourier analysis.  This new nonuniform
technique allows second order accuracy that is
not dependent on the boundary conditions and
does not have local first order errors.
The stability criteria for three dimensional
simulations was rigorously derived and is found
to be (Equation 1).  This stability criteria can be
shown to be less restrictive than the standard
stability criteria based on the smallest space
step.  Since the grid is orthogonal, the
nonuniform second order technique requires
virtually no additional memory and requires up
to six additional multiplications and additions
per nonuniform cell.  The standard lossy FDTD
can be implemented using 36 multiplies and 24
additions per cell.  There was no noticeable
speed difference between the first and second
order nonuniform techniques.

NUMERICAL EXPERIMENT:
     An enclosed stripline, Figure 1, is used to
test the second order technique compared to
the first order technique.  The comparison is of
the FDTD measured impedance of the
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transmission line as a function of frequency
for various grid discontinuities. The
impedance of the enclosed stripline is
calculated one cell away from the
discontinuity in the grid spacing using the
procedure described by Taflove [5].
The structure is excited by a Gaussian pulse
in a cross sectional plane perpendicular to
the direction of propagation.  The field
pattern in the input plane is determined by a
2-D Laplace solver which insures that the
fields in the enclosed stripline are essentially
TEM.  The input plane was located near the
center of the enclosed stripline structure and
the simulation was terminated before
reflections from the end of the stripline could
interact with the measurements.
For all of the experiments described in this
paper, ∆x=∆y=∆z=10[µm] and the time step
was set to 0.45 of the timestep determined
by the standard FDTD stability criteria.  All
metal structures are modeled as ideal
conductors and infinitely thin.

RESULTS:
     Figure 2 shows the results of the stripline
impedance measurement using uniform grid
spacing.  Note that the frequency axis is
stopped at 3[THz] which corresponds to a
wavelength that is ten grid spaces in length
[5,6].  In the nonuniform plots, the vertical
line corresponds to the frequency at which
the largest grid spacing is equal to a tenth of
a wavelength.
Figure 3 and 4 compare the results for an
abrupt change in the grid spacing from ∆z to
2*∆z.  The performance of the second order
nonuniform differencing is much better than
the first order results in the region where
wavelength is greater than ten grid spacings.
Figures 5 and 6 show the results for a
decreasing grid size of ∆z to 1/2*∆z.  Again
as expected the second order nonuniform
technique performs better than the first order
technique.

Figure 7 shows a composite of first and second
order results for 1.5*∆z, 2.0*∆z, and 3.0* ∆z.
The frequencies for a tenth of a wavelength are
2[THz], 1.5[THz], and 1[THz] respectively.

CONCLUSIONS:
     A second order accurate technique for
nonuniform FDTD has been implemented and
compared to the current first order techniques
which rely on supraconvergence.  It is seen on
nonuniform grids that the new second order
technique produces better results for a broader
frequency range than the first order techniques.
The same approach for generating the
nonuniform space stepping can also be applied
to the time stepping.  Although nonuniform
time stepping would increase the memory
requirements, more past time information needs
to be stored, it would allow for the FDTD
method to be coupled with nonlinear simulators
which rely on time stepping.  The nonuniform
second order technique should also work within
nonuniform PML boundaries and may lead to
more efficient implementations.
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Equation (1) Nonuniform Stability Criteria
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Figure 1  Enclosed Stripline Structure
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Figure 2  Uniform Grid Results
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Figure 3 First Order ∆∆z=>2.0 ∆∆z Figure 4  Second Order ∆∆z=>2.0∆∆z
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Figure 5 First Order ∆∆z=>0.5∆∆z
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Figure 6 Second Order ∆∆z=>0.5∆∆z
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Figure 7 Composite of First and Second Order Results
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